Fiche technique

Tyvek® IsoClean®, Modèle IC 458 B WH MS

Tyvek® IsoClean®

DuPont™ Tyvek® IsoClean® couvre-bottes, modèle IC 458 B WH MS. Stérilisé aux rayons gamma et conditioné pour salle blanche. Coutures bordées. Élastiques aux chevilles. Liens aux chevilles. Blanc.

Certifications

- Certifié sélon Règlement (UE) 2016/425
- Vêtement de protection chimique couvrant partiellement le corps, Catégorie III, Type PB [6-B]
- EN 14126 (barrière contre les agents infectieux)
- Stérilisé par irradiation aux rayons gamma pour un niveau garanti de stérilité (SAL) de 10⁻⁶ (ISO 11137-1) et conditionné pour salle blanche
- Traçabilité complète sur tous les vêtements stérilisés avec mise à disposition d'un certificat de stérilité
- Convient à une utilisation en salles blanches BPF classe A/B (ISO Classe 5)

Emballage(Quantité / boîte)

100 par boîte, emballages individuels par paire. Assemblés par 20 dans un emballage extérieur. 2 doublures en polyéthylène. Boîte en carton.

Taille du pro	duit Numéro de l'article	Ajouter des informations	
SM	D15466072		
MD	D15466083		
LG	D15466090		
XL	D15466105		

Réf.

IC0458BWHMS

complète:

PROPRIÉTÉS PHYSIQUES			
Propriété	Méthode d'essai	Résultat typique	EN
Couleur	N/A	Blanc	N/A
Epaisseur	DIN EN ISO 534	185 μm	N/A
Exposition aux hautes températures	N/A	Point de fusion ~135 °C	N/A
Poids de base	DIN EN ISO 536	45 g/m ²	N/A
Résistance à labrasion ⁷	EN 530 Méthode 2	>10 cycles	1/6 1
Résistance à la déchirure trapézoïdale (MD)	EN ISO 9073-4	>10 N	1/6 1
Résistance à la déchirure trapézoïdale (XD)	EN ISO 9073-4	>10 N	1/6 1
Résistance à la flexion ⁷	EN ISO 7854 Méthode B	>100000 cycles	6/6 1
Résistance à la pénétration de leau	DIN EN 20811	7 kPa	N/A
Résistance à la perforation	EN 863	>5 N	1/6 1
Résistance à la traction (MD)	DIN EN ISO 13934-1	>30 N	1/6 1
Résistance à la traction (XD)	DIN EN ISO 13934-1	>30 N	1/6 1
Résistance superficielle à RH 25%, intérieur ⁷	EN 1149-1	2 ¹⁰ Ohm	N/A

1 Conformément à EN 14325 2 Conformément à EN 14126 3 Conformément à EN 1073-2 4 Conformément à EN 14116 12 Conformément à EN 11612 5 Devant en Tyvek® / dos 6 Tests menés selon ASTM Pour de plus amples informations ainsi que pour les restrictions et avertissements, veuillez consulter le Consignes d'utilisation > Supérieur à 4 Inférieur à N/A Sans objet 5 TD DEV Écart-type

PERFORMANCE DE VÊTEMENT				
Propriété	Méthode d'essai	Résultat typique	EN	
Résistance des coutures	EN ISO 13935-2	>30 N	1/6 1	
Type PB 6: Protection partielle du corps	EN 13034	Réussi	N/A	

¹ Conformément à EN 14325 3 Conformément à EN 1073-2 12 Conformément à EN 11612 13 Conformément à EN 11611 5 Devant en Tyvek® / dos informations ainsi que pour les restrictions et avertissements, veuillez consulter le Consignes d'utilisiation 11 Moyenne de 10 combinaisons, 3 activités, 3 capteurs 5 Supérieur à Supérieur à VIA Sans objet 6 Basé sur la plus faible valeur individuelle

CONFORT			
Propriété	Méthode d'essai	Résultat typique	EN
Perméabilité à lair (méthode Gurley)	ISO 5636-5	4 s	N/A
Perméabilité à lair (méthode Gurley)	ISO 5636-5	Oui	N/A
Résistance à la vapeur deau, Ret	EN 31092/ISO 11092	6.8 m ² *Pa/W	N/A
Résistance thermique, Rct	EN 31092/ISO 11092	10*10 ⁻³ m ² *K/W	N/A
Résistance thermique, valeur clo	EN 31092/ISO 11092	0.065 clo	N/A

2 Conformément à EN 14126 5 Devant en Tyvek® / dos > Supérieur à < Inférieur à N/A Sans objet

PÉNÉTRATION ET RÉPULSION			
Propriété	Méthode d'essai	Résultat typique	EN
Répulsion des liquides, acide sulfurique (30%)	EN ISO 6530	>95 %	3/3 1
Répulsion des liquides, hydroxyde de sodium (10%)	EN ISO 6530	>90 %	2/3 ¹
Résistance à la pénétration des liquides, acide sulfurique (30%)	EN ISO 6530	<1 %	3/3 ¹
Résistance à la pénétration des liquides, hydroxyde de sodium (10%)	EN ISO 6530	<5 %	2/3 ¹

1 Conformément à EN 14325 > Supérieur à < Inférieur à

BARRIÈRE BIOLOGIQUE			
Propriété	Méthode d'essai	Résultat typique	EN
Résistance à la pénétration des aérosols biologiquement contaminés	ISO/DIS 22611	Réussi	1/3 ²
Résistance à la pénétration des liquides contaminés	EN ISO 22610	≤ 15 min	1/6 ²
Résistance à la pénétration des particules solides contaminées	ISO 22612	Réussi	1/3 ²
Résistance à la pénétration des pathogènes véhiculés par le sang en utilisant le bactériophage Phi-X174	ISO 16604 Procédure C	Pas de classification	Pas de classification ²
Résistance à la pénétration du sang et des fluides corporels en utilisant du sang synthétique	ISO 16603	3,5 kPa	3/6 ²

2 Conformément à EN 14126 > Supérieur à < Inférieur à

PROPRETÉ			
Propriété	Méthode d'essai	Résultat typique	EN
Efficacité de la filtration bactérienne (3 μm)	ASTM F2101	$98.4~\% \pm 0.9~\%$ STD DEV	N/A
Largage de particules (tambour de Helmke)	IEST-RP-CC003.4.	Catégorie I	N/A

5 Devant en Tyvek® / dos > Supérieur à < Inférieur à N/A Sans objet STD DEV Écart-type

Note importante

Les données de perméation publiées ont été générées par DuPont par des laboratoires de test indépendants agréés selon la méthode d'essai applicable à cette date (EN ISO 6529 (méthode A et B). ASTM F739. ASTM F1383. ASTM D6978. EN369. EN 374-3)

Ces données sont en général obtenues en calculant la moyenne des résultats de trois échantillons de matériaux testés.

Tous les produits chimiques ont été testés à une concentration supérieure à 95 % (I/I), sauf mention contraire.

Les tests sont réalisés à des températures comprises entre 20 °C et 27 °C, à pression ambiante, sauf mention contraire.

Une variation de la température peut influencer de manière significative le temps de passage.

La perméation augmente généralement en fonction de la température.

Les données de perméation cumulées ont été mesurées ou calculées en fonction du taux de perméation minimum détectable.

Le test des substances cytostatiques a été réalisé à la température de test de 27 °C conformément à la norme ASTM D6978 ou ISO 6529 avec l'exigence supplémentaire d'indiquer le temps de passage normalisé à 0.01 µg/cm²/min.

Les agents chimiques de guerre (le lewisite, le sarin, le soman, gaz moutarde, le tabun et l'agent innervant VX) ont été testés conformément à la norme MIL-STD-282 à 22 °C ou conformément à la méthode d'essai FINABEL 0.7 à 37 °C.

Les données de perméation pour Tyvek® s'appliquent uniquement aux vêtements blancs Tyvek® 500 et Tyvek® 600, et ne s'appliquent pas à d'autres styles et couleurs différentes de Tyvek® Les données de perméation sont généralement mesurées pour des produits chimiques seuls. Les caractéristiques de perméation des mélanges peuvent souvent considérablement dévier des résultats obtenus pour un produit chimique seul.

Les données de perméation publiées pour les gants ont été générées conformément aux normes ASTM F739 et ASTM F1383.

Les données de dégradation publiées pour les gants ont été générées à partir d'une méthode gravimétrique.

Ce test de dégradation expose une face du matériau du gant au produit chimique de test pendant 4 heures. Le poids exprimé en pourcentage, qui varie après l'exposition, est mesuré à 4 intervalles : toutes les 5, 30, 60 et 240 minutes.

Taux de dégradation :

- E: EXCELLENT (0 à 10 % de variation de poids)
- G: GOOD (SATISFAISANT, 11 à 20 % de variation de poids)
- F: FAIR (RAISONNABLE, 21 à 30 % de variation de poids)
- P: POOR (INSATISFAISANT, 31 à 50 % de variation de poids
- NR: NOT RECOMMENDED (NON RECOMMENDE, plus de 50 % de variation de poids)
- NT: NOT TESTED (NON TESTÉ)

La dégradation est l'altération physique d'un matériau après une exposition chimique. Les effets généralement constatés incluent : gonflement, plissement, détérioration ou délamination. Une perte de résistance peut aussi avoir lieu.

Veuillez utiliser les données de perméation fournies dans le cadre de l'évaluation du risque pour vous aider à sélectionner un matériau de protection, un vêtement, des gants ou un accessoire adapté à l'usage souhaité. Le temps de passage est un concept différent de la durée limite d'utilisation. Les temps de passage sont un indicateur de la performance de la barrière, bien que les résultats puissent varier en fonction des méthodes d'essai et des laboratoires. Le temps de passage seul ne suffit pas à déterminer la durée limite d'utilisation d'un vêtement après sa contamination. La durée limite d'utilisation peut être plus longue ou plus courte que le temps de passage en fonction des résultats de perméation de la substance, de sa toxicité, des conditions de travail et d'exposition (par ex. : la température, la pression, la concentration, l'état physique).

Dernières mises à jour des données de perméation : 5/5/2020

233: intellectuelle

For further product information, literature and as well as assistance in locating a local supplier, please visit:

www.safespec.dupont.co.uk

The footnotes can be found on the SafeSPEC™ website.

Copyright © 2019 DuPont de Nemours Inc. All rights reserved. The DuPont Oval Logo, DuPont™, and all products denoted with ® or ™ are trademarks or registered trademarks of DuPont or its affiliates.

DuPont Personal Protection

DuPont de Nemours (Luxembourg) S.àr.l.

L-2984 Luxembourg

Tel.: +800 3666 6666 (international toll-free)

Fax: +352 3666 5071

E-mail: personal.protection@lux.dupont.com

